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Notes on Mechanical Fourier analyzers
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Figure 1. Jean-Baptiste-Joseph Fourier.

Introduction

Jean-Baptiste-Joseph Fourier (1768-1830) for a mathe-
matician had a very adventurous life [5].

e Not being of noble birth, he was not eligible to at-
tend the military college.

e However, he was whisked out of his job at the Ecole
Polytechnique and sent in 1798 to Egypt to work on
the Commission of Arts under Bonaparte’s debacle.

e After the above fiasco and returning to France,
Bonaparte sent him as Préfet to the French province
of Isére.

e He became interested in the theory of heat transfer.
This is outside of the scope of this paper, but ap-
parently involved the solution of partial differential
equations who solutions are determined by bound-
ary value conditions.

T .
/ x(t)eiﬂwfct dt
0

T
./0 z(t)[cos(27 fot) — 7 sin(2m f.t)]dL

T T
/0 [z(t) cos(2m ft)] dt — j/o [z(t) sin(2m ft)]dt

Figure 2. The form of the Fourier transform of interest.

The form given here with ¢ being the independent
variable, is a common usage in engineering. Note that
the original integration breaks down into two real inte-
grations:

e z(t) is multiplied by either the sine or cosine of
2n fot, fo being the frequency of interest.

e The product is then integrated over the finite inter-
val [0, T7.

e In order to implement this operation, we must be
able to mechanically generate the sine waves, multi-
ply them times z(¢) and then mechanically integrate
the resulting products over the interval [0, T1.

Applications
The applications of the Fourier transform are so perva-
sive that its implementation will be found in many fields
of science and engineering. Here, to mention a few, are
some of them:

e Tidal analysis and prediction seems to have been
the first.

e Analysis of sound in general, and music and musical
instruments in particular.

e Analysis of electrical circuits.
e Analysis of mechanical systems.
e Astronomy.

e Probability and statistics. The covariance (correla-
tion) function is the Fourier transform of the prob-
ability density function.

e Many digital cameras use the Fourier transform as
part of a data compression algorithm.

e Computer Aided Tomography (CAT) scans, widely
employed in medical analysis.
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Lord Kelvin’s Tide Prediction System!
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Figure 3. The tidal gauge.
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The system [18] is used regularly to collect tide in-
formation at a given location, analyze the amplitude and
phase of a set of known frequencies to be found in the tide
and then, based on the collected information to predict
the tide at that point in future times.

The system consists of three parts:

1. Shown in Figure 3 is the tidal gauge. It consists
of a float sitting in the water, a drum that records
the height of the float relative to the drum, a pen
marking the tide level on the drum, and a clockwork
mechanism that turns the drum once in 24 hours.

2. Shown in Figure 4a is a drawing of the Kelvin har-
monic analyzer. Note this is a special device de-
signed to work at the frequencies to be found in the
tidal action as caused by the periodic motions of the
earth, moon, sun, etc. Figure 4b is a photographic
detail of the machine.

3. Figure 5 is the tide prediction machine, which em-
ploys the information gathered by the tide gauge
and produced by the analyzer to extrapolate what
the tide will be at a given time in the future.

The harmonic analyzer employs eleven ball and disk in-
tegrators in its computations. This device was invented
by Lord Kelvin’s brother. James Thomson [18]. The in-

tegrator evaluates the integral y = fOT h(t)x(t)dt (where
h(t) is the water heighth, z(¢) is either the sine or co-
sine as a function of time for a given frequency, and T'
is length of time over which the integral is computed in
the following manner: the integrator consists of a disk,
set at about 45° in this implementation, whose angular
rotational position is set to correspond to z(¢). Lying on
the disk is a heavy metal ball whose horizontal position
from the center of the disk is proportional to the h(t)
term. The ball in turn is also resting on a metal cylin-
der, also horizontal to the disk and of the same width.
As the disk turns, motion is imparted to the cylinder by
way of the ball. The cylinder’s rotational position is then
proportional to the integral of the h(¢)x(t) term.

Figure 4a. The Harmonic Analyzer.

1William Thomson will be referred to only as Lord Kelvin in the following discussion.



Figure 5. The Tide Predictor.
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Figure 6. Details and results from the Tide Predictor.

In Figure 4b note the two arrows pointing at the two
control cranks of the analyzer. The one on the right moves
the long horizontal bar back and forth as appropriate.
There is an indicator on this bar that nearly touches the
cylinder directly beneath the large circular plate. The in-
dicator is used to follow the tidal trace on the recording
paper as it passes over the cylinder. Additionally, this
crank causes the large bar that runs the length of the
instrument to move. The balls of all the ball and disk
integrators are held by loose clamps on this bar, so that
bar movement left or right causes all of the balls on all
the integrators to move the same distance.

The crank on the left when turned causes two move-
ments: the paper roll with the readings from a tidal gauge
to be fed slowly through the machine, and the harmonic
frequencies to be applied to the disks, causing them to
rotate at the correct four frequencies. Note that each
pair of integrators have a single frequency, but they are
implemented such that are out of phase by 90°.

Remembering that “the tide ebbs and flows twice in
twenty-four hours”, the “fundamental” angular frequency
per hour is approximately 360°/12 = 30° per hour. Prior
work by others [18] indicated that there were four fre-
quency components that needed to be fitted. Without
going into details, T cite from [18], page 12, the following
table:

The numbers shown below I believe to be the actual

computed gear ratios that would yield the nearly correct
frequencies to be employed both in the analysis and in
the predictions.

Seeeps of the sEvERAL TrpAL ConsTITUENTS in DEGREES per HOTUR.

—_— Numerical Approximation. True Speeds. ’ Differences.
184 x 256 1 ‘
Y o PR ey 0. 04 .
M 80° X Jog  pi5 = 2879841042 | 98°:9541042 ‘ 00000000
119 x 817
o . 1L 1m0.04 n ¥ | .
K, 80° X 50 sp0 = 19770410686 | 1520410686 | 0:0000000
5 : a
300x 28X 92 150.9130363 | 13°-9430356 | 00000007
89 x 129 |
178 x 2921 ‘ %
200 Y o 0. | {o a7 .
30°X oo aog = 14779980312 | 14°-0589314 ‘ 0-0000002

Each integrator records the angular movement. At
the end of the reading session, the total movement read
from each pair of integrators for a single component can
be converted into the desired amplitudes (sine and cosine)
of that tidal component.

The Tide Predictor
The third device in the system, the Tide Predictor, is
shown schematically in Figure 5. From [18], page 17:

“The object is to predict the tides for any
port for which tidal constituents have been
found by the harmonic analysis from tide-
gauge observations: not merely to predict the
times and heights of high water, but the depth
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of water at any and every instant, showing it
by a continuous curve, for a year, or for any
number of years in advance.”
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e Driven by a crank, the mechanism at the bottom

generate the sines and cosines with appropriate fre-
quencies and amplitudes, one trigonometric func-

tion per lower pulley.

This device computes the equation:
e These forces affect all of the pulleys. That is, all

of the pulleys can move up and down as pushed by
K the rods attached to the mechanism.

H() = ap+ Z[ak cos wit + by sinwyt]
b1 e The machine adds all of the displacement terms
with the resulting tidal value appearing as the po-
where ag, ai and bg, (k = 1, K) have been evaluated by sition of the weight on the left.
the analyzer.

The Tide Predictor works in the following manner: The machine was very successful and was adopted by

many countries. The United States [15] was using the

e There is a flexible wire that runs over the higher Tide Predictor well into the 20th century?. In the US us-

pulley wheels and under the lower pulley wheels, as age, the tide predictor was employed, but with a different
shown in Figure 5. Note that the mechanism in the method used to evaluate the coefficients.

ﬁgure does not exactly agree with the description_ LOI‘d Kelvin notes that four hours of crank turning
would produce tidal predictions for one harbor for a full
e The upper pulleys are counter weighted. year.

The Henrici Harmonic Analyzer
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Figure 6. The Henrici Analyzer. Photograph courtesy of the Science Museum, London.

The Harmonic Analyzer of O. Henrici. guessed it to be from the above photograph when I finally
The Henrici analyzer [7, 8] is a much more compact ma- saw it at the Science Museum.

chine than that of Lord Kelvin, noting that the device,

at least to me, turns out to be somewhat larger than I The machine is such that the x axis runs from left to

2A student at a seminar told me this in the 1970s and also mentioned this reference.
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right and the y axis is forward. I suspect that depending
on how the machine is set up, the direction of the y axis
could be either forward or backward.

The analyzer is not of the ball and disk variety, but
it does employ glass balls for a similar purpose: they are
difficult to see in the picture. There are three of them in
this version of the machine, and they are under the wheels
at the top of the machine in a metal cage (or socket) that
holds them. Each such ball has two readouts attached
to its cage with their inputs touching the ball. They are
spaced at 90°. These readouts are similar to those found
on an ordinary planimeter. Also, the bottoms of these
cages are open and each of the balls is resting on a single
roller which runs the width of the machine.

Thus, when the machine moves (the whole machine
can move only in the y direction), the balls roll in their
sockets causing the readouts to change values.

At the far right end of the picture will be seen a spool
of wire. This is not an accident, for wire plays an impor-
tant part in the operation of the machine: note that on
the top of the machine there is a single such wire that
wraps around each of the three wheels and continues on.
There is a small carriage on the left end of the machine,
directly in front. The wire, after going totally around
each of the three wheels and then around a fixed pulley
at each end, finally attaches to the top of this carriage.

The whole machine employing movement in y direc-
tion only and the carriage providing movement in the
x direction only, is used to trace out the the curve to
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be analyzed. Any carriage movement in the x direction
will cause the wire to turn the wheels on the top of the
machine and thus impart a circular motion to the cages
containing the balls. That is, this is the way that the
sinusoidal is input to the integration.

If you scale off the diameter of the large wheel on the
right and then multiply this value by 7, the resulting dis-
tance corresponds both to the length of the fundamental
frequency and the working width of the machine. Thus,
this wheel determines how long the cycle of the lowest fre-
quency can be. In any event, the amount that the small
carriage can move in the z direction fixes the maximum
value of the x input, so that the fundamental should be
less than or equal to this.

Seashore [16] employed the Henrici in analyzing the
timbre of musical instruments. He had a musician play
the notes of an instrument one by one, recording a sin-
gle cycle of a note, I believe, on smoked glass. This note
would be scaled to fit the fixed input length of the an-
alyzer, and the three harmonics, phase and amplitude,
would be computed. For the next set of three harmonica,
the machine would have to changed: the wire taken off,
different wheels put on, and new wire added before the
next set of measurements could be taken. Examining a
single instrument would be a time-consuming chore?.

It is worth mentioning that using the Henrici analyzer,
Seashore found that one note on the bassoon has no fun-
damental. Your ear (including your brain) just thinks
that it hears one.

The Stanley Harmonic analyzer—1947

Figure 7a. The analyzer as shown in the instruction booklet. It is the five-harmonics version.

3But that is what graduate students are for.
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An analyzer Using Planimeters

The Kelvin Tide analyzer and the Henrici Analyzer are
both different forms of ball type integrators. And both
machines can process more than one complex sinusoidal
term at a time.

The Henrici has some disadvantages: it is limited in
the x direction span by the diameter of its primary wheel.
And while it can potentially handle many frequencies at
one time, if there are more frequencies to process than
a particular implementation can handle, switching to an-
other set would seem to be clumsy, involving “rewiring”
the device, so to speak. Additionally, the device appears
to be expensive, though I have no pricing information to
validate this claim.

G.U. Yule [19] in 1895 proposed a more “economi-
cal” version of the Fourier analyzer employing ordinary
planimeters. The implementation of this idea seems to

4 Author’s collection.
5T do not know if Mader published an earlier paper.
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Figure 7b. The Yule, Mader, Ott analyzer, as made by W.F. Stanley.* It processes 18

QS

harmonics.

have been done by O. Mader, who published a paper on
the subject in 1909 [12]5.

The original machines seem to have been done by
Gebriider Starzl at Minchen in 1909. Subsequently it
was made by Ott in Germany. Finally, the machine at
hand was manufactured by W.F. Stanley & Co. in Eng-
land.

This device is limited in that it can only process one
frequency at a time. However, changing to another fre-
quency appears to be simple relative to that required for
the Henrici. In addition, changing the length of the fun-
damental is, within a sizable range, relatively easy to do,
as opposed to the fact that the Henrici has a fixed funda-
mental period.

As shown in Figure 7b, the analyzer is stored in a box
not quite a meter in length; the complete set, including
the box, weighs about 20 kilos. Thus it is transportable
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as opposed to being truly portable. The two small boxes
on the right each contain an Albrit planimeter (made by
Stanley). They are quite ordinary.

The large white square slightly left of center is the
table for the planimeters as shown in Figure 7a. At the

SERIAL N¥ 32
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back of the box is a long metal track, almost one meter
in length, that supports the triangular carriage shown in
Figure 7c. At the left of the box is the combination of
the two carriages that are used; these are shown in more
detail in Figure 7c.

STANLEY LONDON

Figure 7c. The main carriage with the smaller, secondary carriage on top of it.

The main carriage has two beveled wheels underneath
it that run in the groove in the separate, long metal track.
At the top of the carriage as shown, there are two sets of
18 holes each. Each pair of gears (18 pairs in total) for a
frequency has pins on their back side, and these pins fit
into one specific matched pair of holes. The gears them-
selves engage into the long rack on the chrome plated
bar which is attached only to the smaller carriage. The
smaller carriage runs on a round bar with a slot on top
within the main carriage. Both carriages travel in the
same y direction.

The tracing pins of the planimeters fit into one of two
holes in each pair of gears. Movement of the small car-
riage causes the gears to rotate, thus inducing a sinusoidal
input into the two planimeters. On the other hand, if the
small carriage is fixed and the large is moved, there is no
input to the planimeters.

The machine has two tracing bars, one of which is
chosen for taking readings. The one selected is input to

a square hole in the side of the (black) bar H. The black
bar in turn has a pin at the bottom which fits into the
socket under H on the main carriage as shown in Figure
7c. The other end of the black bar has a pin which fits
into the slot in the small carriage.
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Figure 7d. An example of a curve to be processed.

The first step in processing the curve in Figure 7d
would be to determine the area under the curve follow-
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ing the route OABCDO’O. This could be done using any
planimeter, perhaps one of the two in the box. The posi-
tion of the tracing arm would be adjusted to fit the length
of the data segment.

After that, the values of the coefficients of the fre-
quency terms desired (no more than 18) would be found
one frequency at a time. To do this, the pair of gears for
the frequency would be selected and inserted into their
proper holes and oriented in the proper direction. The
two planimeters would then be set up as shown in Figure
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7b. The tracing arm would be set to point O and the
readings on the two planimeters noted.

Then the tracing arm would be moved around the
path OABCDO’0O as before, and the current planimeter
readings would be taken. The starting planimeter values
for the frequency would be subtracted from the final one,
and the results scaled to whatever units are desired.

This procedure would then be repeated for the other
harmonics.

Notes and Conclusions

The advent of digital electronic computers eliminated the
necessity for these specialized mechanical analyzers. Even
without the popularization of the the Fast Fourier Trans-
form (FFT) in 1964, the solution to the tidal problem

would have been easy to implement on any garden vari-
ety computer after 1955 as there are only eight sinusoidal
terms, and they could be generated recursively. Also, the
Blackman-Tukey procedure for estimating power spectral
densities (PSDs) had been available from the 1950s.
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