

The Faber-Castell 2/84N Mathema; Scale Operation

Richard Smith Hughes

This short article is dedicated to the memory of Bill Robinson, my friend and **the** expert on all Hyperbolic slide rules.

http://www.tcocd.de/Pictures/SlideRules/FaberCastell/2-84n.shtm

Trigonometric Scales

sin X^g (^gsin Y)

This scale is our typical sin/sin⁻¹ scale, however without the cos scale! The $v(1-x^2)$ scale is used instead;. Note $90^\circ = 100^g = \pi/2$ Radian.

 X^g on the sin X^g scale = sin X^g on the Y scale = cos X^g on the $v(1-x^2)$ scale

sin X^g on the Y scale = X^g on the sin X^g scale

 $\cos X^{g}$ on the $v(1-x^{2})$ scale = X^{g} on the sin X^{g} scale

On the lower right side we have;

 $100^{\text{g}} = 1^{\text{L}}$ (*L* is probably the symbol for 100^{g}) = $\pi/2$ ($\pi/2$ Radians/100^{\text{g}})

 $= 1.570796 (Radians/100^{g} = 0.01570796 Rad./g) = 0.6366197 (100^{g}/Radian = 63.66197 g/Rad.)$

tan X^g (^gtan Y)

Typical tan/tan⁻¹ scale, however only for $4.2^g \rightarrow 61^g$. For $X^g > 50^g$, use the 1/y scale (with the slide closed, y/Y = 1) and 100^g - X^g on the tan scale. An inverted tan scale for $X^g > 50^g$ would have been useful.

Pythagorean (P) Scales

$$\sqrt{(1-x^2)} (\sqrt{(1-Y^2)})$$

This scale is discussed above, and was used on several Faber-Castell slide rules, labeled as the P scale. It can also be used is solving for one side, and the angles, of a right triangle knowing the hypotenuse and other side; I find it much easier using the trig scales on my K&E.

Using the $v(1 - x^2) (v(1 - Y^2))$, P, Scale Knowing c and a or b; solves for b or a and the angles $c^2 = a^2 + b^2$ $a = cv((1 - (b^2/c^2)))$ $b = cv((1 - (a^2/c^2)))$

Procedure	c = 5, a = 4	c = 5, b = 3
1)Place c on y scale over right Y index; c is greator than a or b	c = 5 over Y index	c = 5 over Y index
2)Place cursor over a or b on y scale	Cursor over a = 4 on y scale	Cursor over b = 3 on y scale
3)Read angle X ₁ ^g on the sin scale	Read X ₁ ^g = 59 ^g on sin	Read X ₁ ^g = 41 ^g on sin
(we don't know if it's α or β yet)	scale	scale
4)Under cursor read $\sqrt{1-x^2}$ value	$v(1-x^2) = 0.6$	$v(1-x^2) = 0.8$
5)Place $\sqrt{1-x^2}$ value on the Y scale	0.6 on the Y scale	0.8 on the Y scale
6)Read b or a on the y scale	Read b = 3 on y scale under cursor	Read a = 4 on y scale under cursor
7)Read and angle X ₂ ^g on the sin scale	$X_2^g = 41^g$ on sin scale	$X_2^g = 59^g$ on sin scale
If a > b, α > 50 ^g	$a > b; X_1^g = \alpha = 59^g$	$a > b; X_2^g = \alpha = 59^g$
If $b > a, \alpha < 50^{g}$	$X_2^g = \beta = 41^g$	$X_1^g = \beta = 41^g$

Using the $V(X^2 - 1)$ ($V(1 + Y^2)$) Scale

This scale solves for the hypotenuse, c, and angles knowing a and b; it is much easier using the Trig scales.

Procedure	a = 4, b = 3	a = 3, b = 4
1)Place larger of a or b on y scale over Y = 1	a = 4 over Y = 1	b = 4 over Y = 1
2) move surser over the smaller here any scale	Cursor to 3 on y	Cursor to 3 on y scale
2) Hove cursor over the smaller b of a off y scale	scale	
	X ^g = 41 ^g	X ^g = 41 ^g
3)Read X ^g on the tan scale under the cursor;	$a > b$, thus $X^{g} = 41^{g} =$	$b > a$, thus $X^g = 41^g =$
If $a > b$, $\alpha > 50^{g}$, $b > a$, $\beta > 50^{g}$	β	α
	$\alpha = 100 - 41^{g} - 59^{g}$	$\beta = 100 - 41^{g} = 59^{g}$
4)Read v(X ² −1) value and	$v(X^2 - 1) = 1.25$	$V(X^2 - 1) = 1.25$
5)Place cursor over √(X ² −1) value on the right	1.25 on Y scale	1.25 on Y scale
extended Y scale		
6) Road c on the viscole under the surser	Read c = 5 on the y	Read $c = 5$ on the y
of Read c on the y scale under the cursor	scale	scale

$$c^{2} = a^{2} + b^{2}$$
 c= bV((1 + (a^{2}/b^{2}))) = a V((1 + (b^{2}/a^{2})))

Hyperbolic Functions

The figure below may be of help in the following discussion.

Hyperbolic Functions

 $\leftarrow \leftarrow \leftarrow u \rightarrow \rightarrow \rightarrow$ The x axis is in Radians, u; 1 Radian = 63.66 Grad

0.1 cosh X^g (^gcosh 10y))

With X^g on the 0.1 cosh X^g scale we must multiply the y scale reading by 10

 $X^{g} > 200^{g}$, cosh $X^{g} \approx e^{Xg}/2$

 $X^g < 10^g$, cosh $X^g \approx 1$

0.1 sinh X^g (^gsinh 10y))

With X^g on the 0.1 sinh X^g scale we must multiply the y scale reading by 10

 $X^{g} > 220^{g}$, sinh $X^{g} \approx e^{Xg}/2$

sinh X^g (^gsinh y))

 $X^{g} < 5^{g}$, sinh $X^{g} \approx 0.0157 X^{g}$

Tanh X^g (^gtanh y); Note it should be ^gtanh Y

 $X^g > 150^g$, tanh $X^g \approx 1$

 $X^{g} < 5^{g}$, tanh $X^{g} \approx 0.0157X^{g}$

On the right side we have;

200 : π (200/ π = 200^g/ π Radians, or 63.66g/Radian) = ^gtanh y (should be ^gtanh Y)

 $e^{x} (LnY)$ Using the e^x (Ln Y) scales gives better accuracy than the LL scales e^{+x} $0 \le +X \le 11.7 \qquad 1 \le (e^{x}) \le 120.6(10^{3})$ e^{-x} $-11.7 \le -X \le 0 \qquad 8.3(10^{-6}) \le e^{-x}) \le 1$

e^x Cursor (use x for the cursor)

X limits	Cursor x hairline	Cursor x value	e ^x scale multiplier	e ^{-x} scale multiplier
0 → 2.2	X 10	0	10 ⁽¹⁾	10(-1)
2.2 → 4.4	2.2 10 ²	2.2	10 ²	10-2
4.4 → 6.6	4.4 10 ³	4.4	10 ³	10 ⁻³
6.6 → 8.8	6.6 10 ⁴	6.6	10 ⁴	10 ⁻⁴
8.8 → (11.7)	8.8 10 ⁵	8.8	10 ⁵	10 ⁻⁵

Let $e^{(+/-)X} = e^{|X|}$

The basic procedures for solving e^{x} and e^{-x} are the same: use	IXI	for +/-X
The busic procedures for solving e and e are the sume, use	1	

Let +/- X = X	e ^{+/-(0.5)}	e ^{+/-(7)}	e ^{+/-(11)}		
1)Determine the X limits from the Table	$ X $ limits 0 \rightarrow 2.2	X limits $6.6 \rightarrow 8.8$	X limits 8.8 → (11.7)		
2)Knowing the X limits determine which cursor hairline to use from Table	Use the x/10 cursor	Use the 6.6/10 ⁴ cursor	Use the 8.8/10⁵ cursor		
3) Calculate X - x (the cursor value)	X - x = 0.5 – 0 = 0.5	X - x = 7 - 6.6 = 0.4	X - x = 11 - 8.8 = 2.2		
4) Place the x cursor hairline over X - x on the e ^x scale	Cursor x/10 hairline over 0.5	Cursor 6.6/10 ⁴ hairline over 0.4	Cursor 8.8/10 ⁵ hairline over 2.2		
e ^x					
e ^x = Y scale reading multiplied by the cursor multiplier; e ^x = Y(10 ^x)	Y = 0.165 e ^{0.5} = 0.125(10) = 1.65	Y =0.1095 e ⁷ = 0.1095(10 ⁴) = 1.095(10 ³)	Y = 0.599 e ¹¹ = 0.599(10 ⁵) = 59.9(10 ³)		
	e ^{-x}				
Close the slide; y/Y = 1 e ^{-x} = 1/y scale reading times the cursor multiplier; e ^{-x} = (1/y)(10 ^{-x})	1/γ = 6.05 e ^{-0.5} = 6.05(10 ⁻¹) = 0.605	1/γ = 9.11 e ⁷ = 9.11(10 ⁻⁴) = 911 (10 ⁻⁶)	1/y = 1.67 $e^{-11} = 1.67(10^{-5})$ $= 16.7(10^{-6})$		

|--|

 $1 \le Y \le 120.6(10^3)$ $0 \le LnY \le 11.7$

The left side of the e^{x} (LnY) scale has Ln 10 = 2.302585

1)Write Y as 0.YYY(10 ^x)	$Y = 10 = 0.1(10^2)$	$Y = 1.095(10^3) = 0.1095(10^4)$
2)The exponent 10 ^x tells	10^2 : use 2.2/10 ² cursor	10^4 : use 6.6/10 ⁴ cursor
which cursor to use	10, 038 2.2/10 601301	10, use 0.0/10 cursor
3)Place primary hairline over	Primary hairline over	Primary hairline over 0.1095
0.YYY on the Y scale	0.1 on the Y scale	on the Y scale
4)Read e ^x under the proper	Under the X/10 hairline	Under the 6.6/10 ⁴ hairline

cursor hairline	read 0.102 on the e ^x scale	read 0.4 on the e ^x scale
5)Add e ^x value to cursor value x	0.102 + 2.2 = 2.302	0.4 + 6.6 = 7
6) Ln Y = e ^x value + the cursor value x	Ln 10 = 2.302	Ln 1.095(10³) = 7

 $8.36(10^{-6}) \le Y \le 1$ $-11.7 \le LnY \le 0$

1)Write Y as Y.YY(10 ^{-x})	Y = 0.00008 = 8(10 ⁻⁵)	Y = 0.5 = 5(10 ⁻¹)	
2)The exponent 10 ^{-x} tells	(10^{-5}) , uso 8 8/10 ⁵ bairling	(10^{-1}) : use x/10 bairline	
which cursor to use			
Close the slide; y/Y = 1	Drimany hairling over 9 on the	Drimany bairling over E on the	
3)Place primary hairline over			
Y.YY on the 1/y scale	I/y scale	I/ y scale	
4)Read e ^x under the proper	Under the 8.8/10 ⁵ hairline	Under the x/10 hairline	
cursor hairline	read 0.63 on the e ^x scale	read 0.691 on the e ^x scale	
5)Add e ^x value to cursor value x	0.63 + 8.8 = 9.43	0.691 + 0= 0.691	
6) Ln Y = - [e ^x value + the cursor	$\ln (0.00008) = 0.42$	$\ln (0.5) = 0.601$	
value x]	LII(0.0008) = -9.43	Ln(0.5) = -0.691	

Note; We don't need this scale/cursor! Just convert X^g to radians (multiply X^g by $\pi/200 =$ 0.0157Rad/grad) and use the e^x scale and cursor. Here is the e^{xg} operation for those interested.

e+va
$1 \le (e^{\chi g}) \le 120.6(10^3)$
e ^{-xg}
$8.3(10^{-6}) \le e^{-\chi_g}) \le 1$

Opt $e^{(=/-)/R} = e^{ Xg }$	Oet	$e^{(=/-)Xg} =$	و اxg
------------------------------	-----	-----------------	----------

X ^g limits	Cursor x hairline	Cursor x value	e ^{xg} scale multiplier	e ^{-xg} scale multiplier
$0 ightarrow 140^{g}$	10 ⁽¹⁾ x	0	10(1)	10(-1)
140 ^g → 280 ^g	10² 140	140 ^g	10 ²	10-2
280 ^g → 420 ^g	10 ³ 280	280 ^g	10 ³	10-3
$420^{g} \rightarrow 560^{g}$	10 ⁴ 420	420 ^g	104	10-4
560 ^g → (745 ^g)	10⁵ 560 ^g	560 ^g	10 ⁵	10-5

The basic procedures for solving e ^{xg} and e ^{-xg} are the same: use	X ^g	for $+/-X^{g}$
The busic procedures for solving e and e are the sume, use	111	

Let $(+/-) X_g = X^g $	e ^{+/-(110g)}	e ^{+/-(300g)}	e ^{+/-(720g)}
1)Determine the X ^g limits from the Table	$ X^{g} $ limits $0 \rightarrow 140^{g}$	X ^g limits 280 ^g → 420 ^g	X ^g limits 560 → (745)
2)Knowing the X ^g limits determine which cursor hairline to use from Table	Use the 0/x cursor	Use the 10 ³ /280 cursor	Use the 10 ⁵ /560 cursor
3) Calculate X ^g - x (the cursor value)	X ^g - x = 110 - 0 = 110	X ^g - x = 300 - 280 = 20	X ^g - x = 720 - 560 = 160
4) Place the x cursor hairline over $ X^g - x$ on the e^{xg} scale	Cursor 10/x hairline over 110 ^g	Cursor 10 ³ /280 hairline over 20	Cursor 10 ⁵ /560 hairline over 160
	e ^{xg}		
<pre>e^{xg} = Y scale reading multiplied by the cursor multiplier; e^{xg} = Y(10^x)</pre>	Y = 0.564 $e^{+110g} = 0.564(10) = 5.64$	Y =0.111 e ^{+300g} = 0.111(10 ³) = 111	Y = 0.815 $e^{+720g} =$ $0.815(10^5)$ $= 81.5(10^3)$
e ^{-xg}			
Close the slide; y/Y = 1 e ^{-xg} = 1/y scale reading times the cursor multiplier; e ^{xg} = (1/y)(10 ^{-x})	1/y = 1.775 e ^{-110g} = 1.775(10 ⁻¹) = 0.1775	1/γ = 9 e ^{-300g} = 9(10 ⁻³)	$\frac{1/y = 1.225}{e^{-720g} =}$ 1.225(10 ⁻⁵) = 12.25(10 ⁻⁶)

^gLn Y

 $1 \le Y \le 120.6(10^3)$ $0 \le {}^{g}Ln Y \le 745^{g}$

The left side of the e^{xg} (gLnY) scale has Ln 10 = 146.587g; it should be gLn 10

1)Write Y as 0.YYY(10 ^x)	$Y = 10 = 0.1(10^2)$	Y = 81.5(10 ³) =0.815(10 ⁵)	
2)The exponent 10 ^x tells	10^2 : use $10^2/140$ surger	10⁵; use 10⁵/560 cursor	
which cursor to use	10 , use 10 / 140 cursor		
3)Place primary hairline over	Primary hairline over	Primary hairline over 0.815	
0.YYY on the Y scale	0.1 on the Y scale	on the Y scale	
4)Read e ^{xg} under the proper	Under the 10 ² /140 hairline	Under the 10⁵/560 hairline	
Cursor hairline	read 6.66 on the e ^{xg} scale	read 160 on the e ^{xg} scale	
5)Add e ^{xg} value to cursor value x	6.66 + 140 = 146.6	560 + 160 = 720	
6) g Ln Y = e^{Xg} value + the cursor	$g_{\rm Lp} = 10 - 146.6$	$g_{1} = 81 E(10^3) = 720$	
value x	°LII 10 = 140.0	-1101.3(10) - 720	

1)Write Y as Y.YY(10 ^{-x})	$Y = 12.3(10^{-6}) = 1.23(10^{-5})$	Y = 0.178 = 1.78(10 ⁻¹)
2)The exponent 10 ^{-x} tells Which cursor to use	(10⁻⁵); use 10⁵/560 hairline	(10 ⁻¹); use 10/x hairline
Close the slide; $y/Y = 1$	Primary hairline over 1.23 on	Primary hairline over 1.78 on
3)Place primary hairline over	the	the
Y.YY on the 1/y scale	1/y scale	1/y scale
4)Read e ^{xg} under the proper	Under the 10⁵/560 hairline	Under the 10/x hairline
Cursor hairline	read 159.7 on the e ^{xg} scale	read 110 on the e ^{xg} scale
5)Add e ^{xg} value to cursor value x	159.7 + 560 = 719.7	110 + 0 = 110
6) ^g Ln Y = - [e ^{xg} value + the		
cursor	^g Ln (0.00008) = - 719.7	^g Ln (0.178) = - 110
value x]		

 $8.36(10^{-6}) \le Y \le 1$ $-11.7 \le LnY \le 0$

The Cursor

Grad/Radian, Radian/Grad conversion

 $X^{R} = (X^{g})(\pi/200) = (X^{g})(\pi/2)(1/100)$

Procedure	X ^g = 1	X ^g = 30	X ^g = 100	
1)g hairline over X ^g	g hairling over V ^g - 1	g hairline over X ^g =	g hairline over X ^g =	
on the Y scale	g hairine over x° – 1	30	100	
2)X ^R = (R reading on Y	X ^R = 1.15/100 =	X ^R = 47.1/100 =	V ^R - 157/100 - 1 57	
scale)/100	0.0157	0.471	x = 15//100 = 1.5/	

Radians to Grads

$$X^{g} = (X^{R})(200/\pi) = (X^{R})(2/\pi)(100)$$

Procedure	X ^R = 1	X ^R = 0.5	X ^R = 0.03
1)R hairline over X ^R	P bairling over V ^B = 1	g hairline over X ^g =	g hairline over X ^g =
on the Y scale	Kildifille Over A – 1	0.5	0.03
2)X ^g = (g reading on Y	X ^g = 0.636(100) =	X ^g = 0.319(100) =	$V_{g} = 0.101(10) = 1.01$
scale)(100)	63.6	31.9	$N_{\circ} = 0.191(10) = 1.91$

π/4

The area of a circle = $(\pi d^2/4) = (\pi/4)d^2$

1) d² on the Y scale

2) Read area under $\pi/4$ on the \sqrt{X} scale